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Abstract

Many applications produce large amounts of data, and information visualisation has
been successfully applied to help make sense of this data. Recently geographic maps
have been used as a metaphor for visualisation, given that most people are familiar
with reading maps, and several visualisation methods based on this metaphor have been
developed. In this paper we present a new visualisation method that aims to improve
on existing map-like visualisations. It is based on the metaphor of liquids poured onto
a surface that expand outwards until they touch each other, forming larger areas. We
present the design of our visualisation method and evaluations we have carried out to
compare it with an existing visualisation. Our new visualisation has better usability,
leading to higher accuracy and greater speed of task performance, as well as a lower
error rate.

Keywords: Information visualisation, polygon expansion, liquid modelling, map,
Wikipedia, category hierarchy

1. Introduction

Today’s internet-scale applications produce huge amounts of data. Applications
in the domains of social networking, collaborative filtering, online discussion, user-
contributed content and others have up to hundreds of millions of users generating large
amounts of data on an ongoing basis. There is much value to be gained in understanding
this data and perceiving patterns in it. However, given the amount of data, doing so
remains a challenge. Information visualisation can be employed to visually represent
large amounts of data in a form that makes patterns and associations in the data appear
as visual patterns, which aids assimilation of data [1].
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Our research is framed within this context of perceiving patterns in large-scale
user-contributed content. More specifically, we focus on visualising large hierarchies,
namely the category data of Wikipedia, “the free encyclopedia that anyone can edit”
(Wikipedia’s own slogan). Since it was created in 2001 Wikipedia has experienced
tremendous growth. Today (March 2015) there are over 4.8 million articles, over 24
million registered users, and over 760 million edits in the English Wikipedia alone1,
and there are more than 280 other language editions. Moreover, the English Wikipedia
keeps growing at a rate of around 800-900 new articles every day, and is edited about
3 million times per month2.

Wikipedia articles are classified into categories. In English Wikipedia alone there
are about 2 million categories, and it is common for an article to be assigned to multiple
categories, in some cases dozens of categories. The classification of an article to its
categories is displayed on each article page, but it is difficult to obtain a larger picture
of the distribution of articles among categories. Such an overview would be useful to
gain an understanding of the distribution of content among topic areas, which reflects
their relative importance within the community of their contributors.

Previously we had devised a method for visualising the Wikipedia category hi-
erarchy in the form of a geographical map, using an approach of tiling a plane of
hexagons [2]. Experience with using that visualisation led us to identify several issues
related to the readability and visual quality of the map, thus we set out to devise a new
method that would produce a more readable visualisation of better visual quality. An
early design of this new method, which places areas in the map by expanding poly-
gons instead of tiling hexagons, was documented in a previous paper [3]. Our early
design, however, also had some shortcomings, specifically it could not guarantee that
areas in the map are displayed in the correct size since areas surrounded on all sides
by other areas are prevented from expanding to their intended size. Since then we have
significantly revised the design of our new visualisation method, solving its earlier
shortcomings and overcoming the weaknesses of our previous hexagon-tiling method.
In this article we present the design and evaluation of our new method.

The remainder of this article is organized as follows. Section 2 briefly reviews
related work on map-like visualisation. Then we introduce the design of our visualisa-
tion method in Section 3, and present an evaluation of our visualisation in Section 4.
Finally, we make conclusions in Section 5.

2. Related Work

Structure and composition of large hierarchies are difficult to perceive, and various
traditional visualisation techniques have been developed to try to visualise such data,
including tree-maps [4], voronoi treemaps [5], mosaic plots [6], cone trees [7] and hy-
perbolic trees [8]. Tree-maps make efficient use of display space, but despite their name
they do not actually look like (geographic) maps. Voronoi treemaps are an interesting
variation of the traditional treemap, and can assume any shape, not only rectangular

1http://en.wikipedia.org/wiki/Special:Statistics
2http://stats.wikimedia.org/EN/TablesWikipediaEN.htm
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shapes, but have a very artificial visual appearance. Mosaic plots somewhat resemble
tree-maps in that they have an overall rectangular shape, and rectangular sub-divisions.
Cone trees and hyperbolic trees, on the other hand, are some of the techniques used to
represent the tree structure of hierarchical data visually as nodes and edges, and as such
make no attempt to resemble a map. In sum, these traditional techniques all visualise
hierarchical data using a more or less abstract representation.

A more recent approach [2, 9, 10, 11, 12] is to visualise hierarchical and other
relational data in the form of a geographic map. Maps consist of land and sea, of
countries, provinces and counties that are separated by borders and that are labelled
with their name. Maps are usually also coloured to represent a certain aspect of the
terrain, such as elevation in the case of topographic maps, or another attribute such
as economic output, unemployment rate, language spoken or others in the case of a
thematic map.

The map form can be used to represent non-geographic data as well. Clusters
of data can be represented as regions in the map, and attributes of this data can be
mapped to visual attributes of map objects. The use of the map form has the significant
advantage that most people understand geographic maps easily thanks to early exposure
to maps in school. Even among pre-school children essential mapping abilities are well
developed [13]. Elements such as mountains, valleys, land, sea, rivers, and cities, as
well as the meaning of each, are readily recognized by people even without special
training. Therefore visualising information structures in the form of a geographic map
enables people to relate to such representations more easily without requiring prior
instruction.

Skupin has used the map form to represent the geographic knowledge domain [9].
Taking 2200 conference abstracts, he applied the self-organizing map (SOM) method
to produce a map-like representation of the topics contained in this document collec-
tion. Topics were clustered hierarchically, and this hierarchy was mapped to areas in
the map. The final map output and labelling were produced by a GIS (geographic
information system) software.

Hu et al. have devised another method for representing dynamic relational data in
map form [10]. The approach, called GMap, transforms an arbitrary graph into a map
representation. It represents clusters of nodes as areas in the map, and displays most
areas fused together into one large continent, with only a few small separate islands, if
any.

Gronemann and Jünger have visualised clustered graphs as topographic maps [11].
The input is a graph with an overlaid tree, expressing both relationships and hierarchies
among nodes. This graph data is preprocessed to determine node placement, from
which a triangle mesh is generated that assigns an elevation to each node. The result
data is fed into a GIS software that outputs a map showing islands of areas whose
elevation is above sea level, whereas other areas that have a negative elevation appear
as submerged below the sea.

Auber et al. have proposed another method that produces visualisations resembling
a geographic map, which they term GosperMap, as it relies on the use of a Gosper
curve [12]. The input data has a tree structure, the leaves of which are projected to
a 2D space-filling curve. Finally, regions containing nodes are filled to become areas
corresponding to sub-trees in the input tree. The resulting maps consist of a single
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continent with countries that have highly irregular borders.
Biuk-Aghai and Pang have devised a different method to create map-like visuali-

sations [2]. Their method takes a tree of hierarchical data and constructs a map that
represents nodes at different levels as nested areas, reflecting the hierarchy. Areas are
constructed by tiling hexagons in a hexagon matrix, starting from the area’s centre and
moving outwards in random order.

Examples of each of these five map-like visualisations are shown in Figure 1.
Our new visualisation method presented in this article aims to overcome shortcom-

ings of our previous work that used the hexagon-tiling approach [2] and that resulted in
areas with rough border lines, as can be seen in Figure 1e. Details of our new method
are presented in the following section.

Our method makes use of force-directed layout and overlap removal algorithms.
Here we give a brief overview of a few related algorithms in these two areas.

Force-directed layout algorithms position nodes in a graph, in either two or three
dimensions, modelling the edges of the graph after physical springs that contract when
extended; most algorithms in this class also model nodes of the graph as electrically
charges particles that repel each other. Many such algorithms exist, the most well-
known of which include those by Kamada and Kawai [14], and Fruchterman and Rein-
gold [15]. Kobourov provides a good review of this class of algorithms [16]. Our vi-
sualisation method makes use of the algorithm of Kamada and Kawai which only uses
spring forces and no repulsion forces, and is thus simpler. Moreover, many implemen-
tations of this algorithm are available, facilitating use in our visualisation prototype.

Overlap removal algorithms take a diagram consisting of overlapping objects and
transform it into a diagram that is free of overlaps. There are many overlap removal
algorithms, including, among others, the Force-Scan Algorithm (FSA) [17], Force-
Transfer Algorithm (FTA) [18], and Mixed Integer Optimization for Layout Arrange-
ment (MIOLA) algorithm [19]. They work by pushing overlapping geometric objects
away from each other until no more overlap exists. These algorithms have in common
that they preserve the mental map of the user [20], i.e. the arrangement of objects in
a visualisation after the overlap removal resembles the arrangement before the overlap
removal. In our method we employ the Force-Transfer Algorithm because of its speed
and the resulting compactness of the layout.

3. Visualisation Method

We have devised a novel map-like visualisation method that differs from the other
approaches introduced in Section 2 above. An earlier version of this liquid modelling
method was presented in 2013 [3]. We have further significantly evolved our method
to overcome some limitations that existed, and to improve the visual quality of the
result, which we present here. This method has a smoother appearance, and has better
usability than our previous hexagon-tiling visualisation [2].

Our visualisation method is loosely based on the metaphor of expanding liquids:
each area in the map is represented by an immiscible liquid that is poured onto a point in
a plane. As more of the liquid is poured, it expands outwards until it reaches a minimal
height, at which it stops expanding. As liquids are immiscible (incapable of being
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(a) Skupin [9] (b) Hu et al. [10]

(c) Gronemann & Jünger [11] (d) Auber et al. [12]

(e) Biuk-Aghai & Pang [2]

Figure 1: Examples of existing map-like visualisations
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Figure 2: Area expansion

1. Pre−Processing

a) Construct graph

b) Remove cycles

c) Scale attributes

2. Preliminary Layout

b) Overlap removal

a) Force−directed layout

3. Liquid Modelling

b) Expand until stable

a) Create hectogons

4. Decorating

a) Colouring

b) Draw boundaries

c) Labelling

Figure 3: Visualisation process

mixed), when one liquid expands to touch another liquid, it can not expand further in
that direction and will have to expand in a different direction where further expansion
is possible. This is illustrated in Figure 2. However, if a liquid is surrounded by other
liquids on all sides, it will push those other liquids outwards, which in turn may push
other neighbouring liquids, until the outermost liquids have been pushed sufficiently
outward. The liquids in all areas are assumed to have the same density and height,
and only differ in the surface area occupied, so that the size of an area is proportional
to its volume and mass. This volume or mass is mapped from a size attribute of the
underlying data to be visualised.

Our method begins with all liquids having an equally small surface area but differ-
ent height. As a result, each liquid will expand its surface area until its height reaches
the minimum height and expansion stops. As mentioned above, in this process a liquid
may push or be pushed by its neighbours. The entire process is loosely based on the
observable behaviour of liquids, without strictly modelling all details of their physical
behaviour.

The visualisation process consists of four main steps, as illustrated in Figure 3. In
the first step, the input data is converted to a tree representation, which is then used as
the input for the next step. In the second step, nodes are laid out using several layout
methods, according to the estimated surface size, hierarchical relation, and similarity,
producing a preliminary layout. The final position of each visible node is used as the
initial position of that node’s liquid. In the third step, the liquid modelling is applied
until all areas reach a stable state. Finally in the fourth step the map is decorated using
colours, borders, and labels. Next we explain these steps in detail.

3.1. Preprocessing

Our visualisation represents a hierarchy of data as nested areas in a map-like ap-
pearance – counties nested in provinces nested in countries, for example. To achieve
this, our visualisation method requires its input data to have a tree structure, and each
node in the tree to have an attribute that can be mapped to the size of its corresponding
area in the visualisation. Preprocessing of the source data converts it into the required
form, the details of which differ depending on the source data. In our case we visu-
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alised the category hierarchy of Wikipedia, and the following explanation illustrates
the pre-processing required for this particular data set.

Our source data are the publicly available Wikipedia database dumps made avail-
able by the Wikimedia Foundation3. From these we retrieve the database tables corre-
sponding to category links and wiki pages. Retrieving the category links, we construct
a graph consisting of nodes for Wikipedia categories and edges for parent-child rela-
tionships between categories. According to Wikipedia editing guidelines this graph is
supposed to be a tree, however because category creation and assignment in Wikipedia
is performed by human editors, it is possible that some anomalies exist in the graph,
such as cycles. Thus we remove these cycles from the graph by performing a breadth-
first search starting from the root node, and maintaining a list of visited nodes. When
an edge causing a cycle is encountered it is simply removed. This results in a tree struc-
ture. In the process we also eliminate non-content categories which are meaningless
for our visualisation.

Next, we select a size attribute to be mapped to the volume of each area. In the case
of the Wikipedia data we use the article count, i.e. we aggregate a count of the number
of articles that are assigned to each category. We then scale the size attribute using a
logarithmic scale so as to avoid extremes of area sizes.

We also calculate similarities between categories using the method detailed in [21],
which we use to place nodes in the preliminary layout. These similarity values express
the degree to which different content categories share co-assigned articles, implying
that their content is similar.

3.2. Preliminary Layout

We produce the layout of our visualisation in two steps: first we create a preliminary
layout, and then we apply liquid modelling to create the final layout. The preliminary
layout defines approximate positions and estimated area sizes of the final visualisation.
To create the preliminary layout we apply a force-directed algorithm [14]. In order to
obtain reproducible visualisations, we fix the random seed. Category similarity values
are used to provide additional constraints to the force-directed algorithm, acting as
additional springs between similar nodes, pulling them closer to each other. Similarity
values, however, are optional and our method is also able to produce visually pleasing
maps even when no such attribute exists. After the layout reaches a stable state we
have initial node positions for all nodes in our tree. Using the estimated size of a node
which is based on its size attribute we temporarily place a disc at each node’s position
and then apply an overlap removal algorithm [18] to produce node positions where the
discs are free of overlap. When the discs are removed the result is a preliminary layout
with positions of all nodes.

Figure 4a shows an example of the preliminary layout for a small tree of 158 nodes,
showing the temporary disc of each node. The size attribute reflected by the disc’s area
size is the article count.

3http://dumps.wikimedia.org/
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(a) Preliminary layout (b) Liquid modelling (c) Decorating

Figure 4: Main steps of producing the visualisation

(a) (b)

Figure 5: Flattening of a prism representing a column of liquid: (a) before flattening, (b) after flattening

3.3. Liquid Modelling

Given node positions from the preliminary layout, we next model the pouring of
liquids onto these positions. Our method uses hectogons (initially regular 100-sided
polygons) instead of circles to represent areas in the map. Hectogons are nearly indis-
tinguishable from circles unless zooming in very closely, but as they are polygons they
have the advantage that the position of each vertex can be separately controlled.

The column of liquid on each node forms a hectogonal prism with initial base area
of 1 and a height corresponding to its volume, i.e. related to the node’s size attribute.
The aim of the modelling process is to flatten all prisms so that they all have the same
minimal height while preserving their volume. This will result in a collection of prisms,
all of whose base areas are proportional to their corresponding size attribute. This is
illustrated in Figure 5, where a tall narrow prism is flattened to a short wide one.

To flatten a prism, we iteratively expand or shrink its base polygon. We also peri-
odically detect and remove overlaps. As the volume remains unchanged, the height of
a prism can be calculated from the base area.

During flattening of a prism, we first check if its height is greater than the minimum
height. If so, either this prism’s base area will be expanded or that of another prism
will be shrunk, depending on whether this prism has enough space to expand. If the
prism is already of the minimum height it will be left unchanged.

8



(a) (b) (c)

Figure 6: Expanding of a polygon: extract from two polygons with three highlighted vertices each; (a) before
expanding; (b) after moving one vertex of the left polygon outward to grow that polygon; (c) after moving
one vertex of the right polygon inward to shrink that polygon in order to make room for further growth of
the left polygon

(a) (b) (c)

Figure 7: Overlap removal: (a) before the overlap, (b) expanding the left polygon by moving the highlighted
vertex outward causes an overlap with the two smaller polygons, (c) the overlap is removed by moving the
four highlighted vertices inward in the two polygons

Collision handling. The polygonal base of a prism is expanded by moving one of its
vertices outward by a small distance. If there is a potential collision, e.g. if the moved
vertex will fall inside the region of another prism, the polygonal base of the opposite
prism will be shrunk by moving its nearest vertex inward by a small amount. The
height of that prism will thus grow as its base shrinks. This is illustrated in Figure 6.

The above polygon expansion method may lead to collisions with neighbouring
polygons. For performance reasons, however, we do not perform collision detection
immediately. Instead we allow temporary overlaps after expanding, and periodically
detect and remove overlaps after a certain number of iterations (in our case after 100
iterations).

An illustration of a collision situation is shown in Figure 7. Expanding the polygon
caused two collisions. When a vertex falls inside another polygon, the overlap can be
removed by moving one or more vertices in the overlapped polygon inward. This also
causes an increase of the height of the affected prism, and a decrease of its base surface
area.

Iteration continues until either all polygons have been fully expanded, i.e. their
corresponding prism’s height has reached the minimum height, or until a pre-defined
maximum number of iterations has been reached (in our case we use a maximum of
100,000 iterations, but usually complete the liquid modelling in much fewer iterations,
depending on the size of the source data). During one iteration, all polygons are pro-
cessed, and for each polygon, all its vertices are processed. At first, almost all vertices
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(a) (b) (c)

Figure 8: Examples of extremely irregular shapes to be avoided during vertex selection for polygon expan-
sion by considering the included angle: (a) spike protruding from the polygon, (b) strip-shaped polygon, (c)
polygon with a deep cavity

(a) (b) (c)

Figure 9: Examples of included angles: (a) -167 degrees, (b) 120 degrees, (c) 82 degrees; the estimation
function would score angle (a) highest after getting its absolute value, i.e. 167 degrees

are moved during an iteration, but toward the end most polygons have stopped expand-
ing and only few vertices are moved during one iteration.

Polygon expansion will choose one of the hectogon’s 100 vertices to be moved
outward. The choice of vertex is made by applying an estimation function to every
possible move and selecting only the best choice for execution. The estimation function
takes three factors into account: (1) included angle at the vertex, (2) pressure of this
polygon, and (3) pressure of the opposite polygon. This is explained in more detail
below.

Included angle. To avoid extremely irregular shapes, such as spikes, strips and deep
cavities as illustrated in Figure 8, our estimation function considers the included angle
at the vertex. The included angle is the angle between a given vertex and its two
immediate neighbours on either side. The optimal included angle is near 180 degrees.
An angle greater than 180 degrees leads to a concave polygon and so that vertex should
be pushed outward. An angle significantly less than 180 degrees leads to long spikes
or strips and thus the involved vertex should be pulled back. We achieved best results
by giving vertices with larger absolute value of included angle a higher priority, as
illustrated in Figure 9.

Pressure. Another factor to be considered is pressure. When there is not enough space
for a polygon to expand, such as when it is surrounded on all sides by other polygons,
it may push one of its neighbours. This puts pressure on the vertices that touch the
neighbour, which pass the pressure along to the neighbour. Likewise, the neighbour
also returns pressure. The pressure difference at a vertex is calculated by comparing the
height of one prism to its neighbour. If there is no neighbour, that pressure is considered
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(a) (b)

Figure 10: Two neighbouring prisms pushing against each other: (a) the right prism is significantly higher
than the left prism, (b) the right prism has pushed into the area of the left prism, thereby lowering its height
and increasing the height of the left prism, resulting in a decrease of the height difference between the two
prisms

(a) Initial state (b) Intermediate state (c) Final state

Figure 11: Expansion of an area surrounded by several layers of other areas. After several iterations the area
has expanded to reduce the height of its column of liquid to be equal to that of all other areas in the map.

to be zero. The estimation function assigns highest priority to the vertex that has the
largest positive pressure difference. As a result, after several iterations the heights of
neighbouring prisms will tend to become the same. Figure 10 illustrates this pushing
of one prism into the area occupied by another prism. Even polygons surrounded by
many layers of other polygons are eventually, after a sufficient number of iterations,
able to reduce the height of their column of liquid to the minimum height, and the map
thereby reaches a steady state. Figure 11 shows an example of this where one shape in
the centre of the map that is surrounded by three to five layers of other shapes initially
has a high column of liquid (represented by the darker fill colour), and then gradually
expands, pushing its neighbours outwards, who in turn push their neighbours outwards,
until this push reaches the edge of the combined shape and the expansion is complete.

By adjusting the weights of the angle and pressure factors of the estimation func-
tion, liquid modelling can produce different results. If pressure is given a higher pri-
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ority, polygons will expand more aggressively, resulting in more irregular shapes, e.g.
exhibiting long spikes. If angle is given a higher priority, the resulting shapes will be
more regular, close to squares or circles. Through experimentation we determined the
suitable weights of the estimation function are 0.75 for included angle and 0.25 for
pressure. An example of the output of liquid modelling is shown in Figure 4b.

3.4. Decorating

The last step of our visualisation is to decorate the map using colours, borders and
text labels, as in Figure 4c. We define a colour function to map an attribute of the data
to the fill colour of areas in the map. Labels are placed near centroids of polygons. An
overlap removal algorithm (FTA) [18] is applied to ensure labels at the same level in the
hierarchy do not overlap with each other. As polygons of all areas do not overlap, there
may be small gaps (several pixels wide) between neighbour polygons. We remove such
gaps by joining neighbour vertices that are near enough to each other.

A complete map of the Simple English edition of Wikipedia is shown in Figure 12.
In this map, two attributes of the underlying data are mapped to three visual attributes:
(1) the number of articles in each category is mapped to the initial area size before
liquid modelling; (2) the number of articles in each category is additionally mapped to
the area’s fill colour; (3) hierarchy relations (parent-child node) are represented through
proximity and borders: all child nodes are placed surrounding a parent node, and border
lines of different thickness represent the areas of different hierarchical levels.

4. Evaluation

To assess the effectiveness, visual quality and performance of our liquid-modelling
visualisation method we performed four evaluations, focusing on following aspects:

1. Usability: We conducted a user evaluation to determine standard usability fac-
tors, such as ease of use, ease of learning, speed of task performance, etc.

2. Error rate: We evaluated the rate of error in accurately representing the size of
each area in the map.

3. Visual quality: A second user evaluation determined users’ perception of the
visual, or aesthetic, quality of our visualisation.

4. Performance: We evaluated the running time of our method.

Usability was already evaluated in the earlier version of our liquid-modelling based
visualisation method [3]. As the differences between the earlier version and the current
version of our method are mainly internal, related to the workings of the algorithm,
aspects of usability are unaffected by these differences and we present the results of
our earlier usability evaluation here, but augmented with a more detailed statistical
analysis.

The evaluations of usability and error rate compared our liquid-modelling visuali-
sation method against our previous hexagon-tiling visualisation method [2]. We chose
that visualisation for, of all the visualisations reviewed in Section 2, it looks most sim-
ilar to our liquid-modelling visualisation.
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Figure 12: Visualisation of Simple English Wikipedia
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(a) Map A (b) Map B

Figure 13: Visualisations used in the evaluation

4.1. Usability

We evaluated the usability of the early version of our liquid modelling-based visu-
alisation with a controlled experiment, which is a widely used methodology to discover
and test potential benefits and limitations of an information visualisation [22, 23].

4.1.1. Method
For the setup of this evaluation, we obtained visualisations of the Simple English

edition of Wikipedia for both visualisation methods. We refer to our liquid modelling-
based visualisation as Map A, and to the hexagon tiling-based visualisation of [2] as
Map B. Samples of both maps are shown in Figure 13. We recruited 20 volunteer
subjects to evaluate the usability of Map A and Map B. All subjects were undergraduate
students of software engineering, aged 21-22, with 16 males and 4 females. All subjects
had read articles on Wikipedia before, but none had edited any Wikipedia articles, and
none had used any visualisation in the past (other than simple bar charts, pie charts,
etc.).

Subjects were divided in two groups of 10 students each, and performed two rounds
of evaluation, one each with Map A and Map B. The tasks in both rounds were similar,
but not identical, requiring subjects to find the answers in each round. Between groups
the order of visualisations presented was reversed: group 1 used Map A in the first
round and Map B in the second round, whereas group 2 used Map B in the first round
and Map A in the second round. This within-subject design allowed us to control for
the learning effect and ordering effect that occur when the same kinds of tasks are
performed twice [24].

Subjects were introduced to the visualisation presented to them and then asked to
perform the following 9 tasks (this is the set of tasks used in the first round):

1. How many countries are there in the map?
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Table 1: Mean accuracy values (%)

Group Map A 95% Confidence Interval Map B 95% Confidence Interval
Group 1 93.33 [87.78, 98.89] 80.00 [71.79, 88.21]
Group 2 90.00 [83.04, 96.96] 87.78 [79.88, 95.69]
Overall 91.67 [87.58, 95.76] 83.89 [78.43, 89.34]

Table 2: t-test result of mean difference in accuracy (%)

Mean Difference 95% Confidence Interval t df p-value
7.778 [2.416, 13.140] 3.036 19 0.007

2. Which country is the biggest one?
3. Compare country Religion and History, which one has more provinces?
4. Point out the position of country Science.
5. Name any 3 provinces in country Science.
6. How many provinces are there in country People?
7. How many counties are there in province Nature?
8. Which province is the biggest one in country Science?
9. What is the level of area Technology (country, province or county)?

After each round of evaluation subjects filled an exit questionnaire giving feedback
using a 7-point Likert scale (from “strongly disagree” through “neutral” to “strongly
agree”) on following six usability statements which are informed by [25] and [26]:

1. I enjoy using the map
2. The map is easy to use
3. The map is easy to learn
4. The information of the map is easy to understand
5. It’s easy to perform tasks in the map
6. I am satisfied to perform tasks in the map

4.1.2. Results
We used the answers to assess accuracy, speed of task performance, and usability.

The descriptive statistics for accuracy are summarized in Table 1, which indicate that
subjects using Map A achieved a higher accuracy of answers. By looking at the 95%
confidence interval of the means, we observe larger intervals for Map B subjects than
for Map A in both groups, meaning a higher variance of accuracy for Map B subjects.
This is not favoured as a more greatly varying accuracy implies obstacles in training
and learning for general users. To sum up, we observed higher accuracy and lower
variance in the trials with Map A subjects. A two-tailed paired t-test was performed
to verify the accuracy differences between Map A and Map B. As shown in Table 2,
subjects who used Map A had an average accuracy 7.78% higher, statistically signifi-
cant at the p < 0.01 level. Clearly Map A helped achieve higher accuracy. Effect size
(Cohen’s d) was medium (d = 0.44).
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Table 3: Mean speed of task performance (m:ss)

Group Map A 95% Confidence Interval Map B 95% Confidence Interval
Group 1 4:13 [3:57, 4:31] 4:01 [3:25, 4:37]
Group 2 3:20 [3:02, 3:39] 4:29 [3:52, 5:06]
Overall 3:47 [3:30, 4:05] 4:15 [3:51, 4:39]

Table 4: t-test result of mean difference in speed (seconds)

Mean Difference 95% Confidence Interval t df p-value
-27.900 [-58.637, 2.837] -1.900 19 0.073

The results for speed of task performance are shown in Table 3. The average speed
of Map A was 28 seconds faster than Map B, representing an 11% higher speed. Also,
the learning effect could be observed, resulting in faster task performance in the second
evaluation round (Map B for group 1, Map A for group 2). The speed-up from round
1 to round 2 is particularly great in group 2 which used Map A in the second round.
While we cannot conclude this finding is statistically significant (Table 4), the result
still reflects that Map A facilitated faster task completion than Map B in our experiment.
Effect size (Cohen’s d) here was also medium (d = 0.63).

For the assessment of usability, we mapped responses from the Likert scale to nu-
merical values, with 1 corresponding to “strongly disagree” and 7 to “strongly agree”.
We tested for statistical significance using a two-tailed paired t-test. The results for
group 1, group 2 and all participants are shown in Table 5, respectively.

4.1.3. Discussion
By looking at the figures between group 1 (first using Map A, then Map B) and

group 2 (first using Map B, then Map A), we conclude the impact of learning and
ordering effect is eliminated by the counterbalancing design of the experiment [27].
This can be observed from the small variances across two rounds of experiments for
both types of visualisations.

For group 1 (Table 5), all usability measures except “easy to perform tasks” and
“easy to learn the map” show a statistically significant result at the 0.05 level (or bet-
ter) while comparing the advantages of Map A over Map B. This shows that group 1
subjects perceived easier usage, higher enjoyment and greater satisfaction in trials of
Map A. The mean values for both visualisations of all usability measures in this group
are 5.42 and 4.50, respectively. A paired t-test shows that the difference of the mean
between Map A and Map B is statistically significant at the 0.01 level, demonstrating
that Map A has generally a better usability.

For group 2 (Table 5), all usability measures show a statistically significant result
at the 0.05 level (or better). Among all surveyed usability items, “easy to use the map”
recorded the highest difference, which means a significant perception of easier use over
Map B. The mean values for both visualisations of all usability measures in this group
are 5.48 and 4.63, respectively. The differences between Map A and Map B in this
group are greater than the previous group, as verified by the paired t-test at the 0.001
level.
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Table 5: Usability measures for Group 1, 2 and both groups combined

Map A Map B Diff. Sign.
Group Statement mean median mean median δ p
Group 1 Enjoy using the map 5.10 4.5 4.30 4 0.80 0.037

Easy to use the map 5.30 5 4.30 4.5 1.00 0.032
Easy to learn the map 5.70 5.5 4.80 4.5 0.60 0.051
Easy to understand the map 5.70 6 4.80 5 0.90 0.010
Easy to perform tasks 5.20 5 4.50 4.5 0.70 0.132
Satisfied to perform tasks 5.50 6 4.30 4 1.00 0.008
Mean 5.42 5.3 4.50 4.4 0.83 0.045

Group 2 Enjoy using the map 5.10 5 4.20 4 0.90 0.010
Easy to use the map 5.40 5.5 4.10 4 1.30 0.002
Easy to learn the map 5.60 6 4.90 5 0.70 0.025
Easy to understand the map 5.70 6 4.90 5 0.80 0.037
Easy to perform tasks 5.40 5.5 4.70 4.5 0.70 0.045
Satisfied to perform tasks 5.70 6 5.00 4 0.70 0.006
Mean 5.48 5.7 4.63 4.4 0.85 0.021

Combined Enjoy using the map 5.10 5 4.25 4 0.85 0.000
Easy to use the map 5.35 5 4.20 4 1.15 0.000
Easy to learn the map 5.50 5 4.85 5 0.65 0.002
Easy to understand the map 5.70 6 4.85 5 0.85 0.001
Easy to perform tasks 5.30 5 4.60 4.5 0.70 0.012
Satisfied to perform tasks 5.50 6 4.68 5 0.85 0.001
Mean 5.41 5.3 4.57 4.6 0.84 0.003
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The overall differences for both groups combined (Table 5) between Map A and
Map B of all six usability measures were statistically significant, at the 0.05 level for
the measure “ease of performing tasks”, and at the 0.005 level for the remaining five
measures. This comparison demonstrates that Map A had significantly better usability
than Map B. Moreover, all measures of Map A are on average between 5 (“somewhat
agree”) and 6 (“agree”) in the Likert scale, whereas Map B is at the level of 4 (“neutral”)
to 5 (“somewhat agree”). This represents a stronger perception of better usability of
Map A compared with Map B.

Subjects also gave qualitative feedback on both visualisations and several subjects
stated that Map A is clearer than Map B. This could be because in Map A countries
are kept separate from each other whereas in Map B many countries are fused together.
Moreover, text labels in Map A are much less cluttered, and area boundaries are less
ragged than in Map B. All of this contributes to a clearer map, better readability and
greater usability.

4.2. Visual Quality
Following the above usability evaluation, we tried to improve readability of our

visualisation by adjusting aspects of visual quality.

4.2.1. Method
We conducted a user evaluation focusing on aspects of visual quality, and compar-

ing several different variations of layout and decoration to determine which one is more
favoured by users. To this end we controlled as many variables as possible, using the
same dataset, the same pre-processing output, including the same preliminary layout
positions, the same colour scheme, and the same font style and size in all visualisations.
The dependent variables were the enlargement factor and border style. We recruited
26 students aged 18 to 25 (mean age 21, median age 20) with 17 females and 9 males.
Among them were 21 undergraduate students and 5 master students; 5 students ma-
jored in technical subjects (computer science, engineering), whereas the remaining 21
students majored in non-technical subjects (accounting, business, economics, finance,
language). Students self-reported their IT skills, with 15 stating basic IT skills, 5 claim-
ing advanced IT skills, and 6 who reported having programming skills. On prior use
of Wikipedia, 21 students had read Wikipedia articles before, 3 had edited Wikipedia
articles, and 2 had never used Wikipedia at all.

We conducted two rounds of evaluation:

1. Comparison of different scaling factors of our liquid-modelling visualisation
2. Comparison of different border widths of our liquid-modelling visualisation

Scaling factor. Our visualisation method allows the size of areas in the final layout to
be controlled by applying a scaling factor. This factor is multiplied by the area size
to uniformly grow or shrink all areas. Controlling this factor results in a map that has
a more sparse or dense appearance. Our evaluation aimed to determine the suitable
scaling factor based on user feedback. Figure 14 shows extracts from the visualisations
with different scaling factors used in our evaluation.

Subjects were presented with these visualisations (maps A1, A2, A3) and with
following statements:
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(a) Map A1: Scaling factor 0.64

(b) Map A2: Scaling factor 0.81

(c) Map A3: Scaling factor 1.0

Figure 14: Visualisations used in the evaluation of visual quality – scaling factor

19



1. Related to how pleasing the different versions of the map look, I rank them:
2. Related to how beautiful the different versions of the map look, I rank them:
3. Related to how clear the different versions of the map look, I rank them:
4. Related to how easy it is to perceive boundaries between areas in the different

versions of the map, I rank them:
5. Related to how easy it is to understand the hierarchy of areas in the different

versions of the map, I rank them:
6. Related to the compactness of the layout in the different versions of the map, I

rank them:

For each statement, subjects indicated which of the three maps (A1, A2, A3) they
ranked first, second or third.

Border width. We also experimented with different border widths, ranging from fine to
thick borders. To determine the suitable border width, the second round of evaluation
elicited user feedback. Figure 15 shows extracts from the visualisations with different
border widths used in our evaluation.

Subjects were presented with these visualisations (maps A4, A5, A6) and with six
statements; the first five statements were the same as for the first round of evaluation
of the scaling factor above, and the sixth statement was:

6. Related to the look of the borders between areas in the different versions of the
map, I rank them:

Again, subjects indicated which of the three maps (A4, A5, A6) they ranked first,
second or third.

4.2.2. Results and Discussion
We received 26 valid responses for the evaluation of scaling factors. Counts of

responses per map and rank are summarised in Table 6. Some responses ranked two
or even all three maps at the same rank where subjects felt that they were equally pre-
ferred. The counts indicate that map A2 (with scaling factor 0.81) was considered the
most pleasing and beautiful (statements 1 and 2) by the majority of subjects, followed
by map A1. However, for the remaining four statements we noticed an identical pat-
tern: map A1 had the highest count for first rank, A2 was highest for second rank, and
A3 had the highest count for 3rd rank. For these four statements our subjects clearly
preferred a map with more gaps between areas over a denser one. Moreover, for all six
statements map A3 trailed behind the other two maps, which reflects a clear preference
against map A3. This surprised us, as we considered map A3 (which is the densest one)
to look most similar to a geographic map, and personally preferred it for that reason.

We analysed the responses statistically to test for significance. Firstly we nor-
malised the rank responses to scores (applying min-max normalisation, converting
ranks 1, 2 and 3 to scores of 2, 1 and 0, respectively). Means of these scores and
their standard deviations are presented in Table 7, along with significance. For signif-
icance we ran a two-tailed paired t-test on the scores of the two highest-scoring maps
(i.e. maps A1 and A2). For statements 3 (“the map looks clear”) and 4 (“it is easy
to perceive boundaries”), the preference for map A1 was statistically significant, at
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(a) Map A4: Thin borders

(b) Map A5: Medium borders

(c) Map A6: Thick borders

Figure 15: Visualisations used in the evaluation of visual quality – border width
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Table 6: Evaluation results: count of responses for scaling factor per map and rank (highest count per rank
highlighted in bold)

Statement Rank A1 A2 A3
1. Map looks pleasing 1st 8 13 5

2nd 12 12 3
3rd 6 1 18

2. Map looks beautiful 1st 9 11 6
2nd 9 15 3
3rd 8 0 17

3. Map looks clear 1st 23 2 1
2nd 2 24 2
3rd 1 0 23

4. Easy to perceive boundaries 1st 20 5 3
2nd 2 21 4
3rd 4 0 19

5. Easy to understand hierarchy 1st 13 7 6
2nd 6 17 5
3rd 7 2 15

6. Compactness of layout 1st 13 7 8
2nd 5 19 2
3rd 8 0 16
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Table 7: Evaluation results: statistical analysis for scaling factor (highest mean per statement highlighted in
bold)

Map A1 Map A2 Map A3 Sign.
Statement mean stdev mean stdev mean stdev p
1. Map looks pleasing 1.08 0.74 1.46 0.58 0.50 0.81 0.076
2. Map looks beautiful 1.04 0.82 1.42 0.50 0.58 0.86 0.076
3. Map looks clear 1.85 0.46 1.08 0.27 0.15 0.46 0.000
4. Easy to perceive boundaries 1.62 0.75 1.19 0.40 0.38 0.70 0.046
5. Easy to understand hierarchy 1.23 0.86 1.19 0.57 0.65 0.85 0.852
6. Compactness of layout 1.19 0.90 1.27 0.45 0.69 0.93 0.713

the p < 0.001 level for statement 3, and at the p < 0.05 level for statement 4. The
results for the other statements, however, while pointing to a preference for map A1
(statements 3, 4, 5) or map A2 (statement 6), were not statistically significant.

For border width, we received 25 valid responses, and once again some responses
ranked two or even all three maps at the same rank. Counts of responses per map
and rank are summarised in Table 8. The results indicate that for a pleasing map the
medium border width was preferred, but for a beautiful map the thinner borders were
preferred. For each of the remaining four statements we again saw an identical pattern:
map A6 had the highest count for first rank, A5 was highest for second rank, and A4 had
the highest count for 3rd rank. For these four statements our subjects clearly preferred
a map with thicker borders which helped to increase clarity and improve the perception
of boundaries and hierarchies. The different results between these six statements thus
indicate that no one border width was favoured for all purposes and that probably a
medium border width would be the most acceptable compromise.

Again, we analysed the responses statistically to test for significance. Rank re-
sponses were normalised to scores in the same way as described above. Means of these
scores and their standard deviations are presented in Table 9, along with significance,
calculated by a two-tailed paired t-test on the scores of the two highest-scoring maps
(i.e. maps A4 and A5 for statements 1 and 2, and maps A5 and A6 for statements 3–6).
For border with, however, none of the preferences expressed by the voted ranks were
statistically significant.

4.3. Performance

To evaluate performance of our method we tested it with maps of different size.
We randomly generated input data consisting of different numbers of areas of the same
size, ranging from 61 to 1258 nodes (i.e. areas) and ran 10,000 iterations on each test
run. The hardware used was a PC with Intel i7-4770 CPU (3.40GHz) and 8GB RAM,
running Windows 7. Our program was implemented in Java. The time complexity of
our algorithm is polynomial, i.e. of the order O(nk). A plot of the performance figures
is shown in Figure 16.

We designed our method for generating static visualisations, so achieving fast per-
formance was not our primary concern. Performance tuning, deployment on a faster
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Table 8: Evaluation results: count of responses for border width per map and rank (highest count per rank
highlighted in bold)

Statement Rank A4 A5 A6
1. Map looks pleasing 1st 9 12 4

2nd 4 12 10
3rd 12 1 11

2. Map looks beautiful 1st 11 9 4
2nd 6 14 5
3rd 8 2 16

3. Map looks clear 1st 5 7 13
2nd 6 17 5
3rd 14 1 7

4. Easy to perceive boundaries 1st 2 7 17
2nd 6 17 4
3rd 17 1 4

5. Easy to understand hierarchy 1st 7 10 14
2nd 3 13 8
3rd 15 2 3

6. Look of the borders 1st 3 10 10
2nd 5 15 11
3rd 17 0 4

Table 9: Evaluation results: statistical analysis for border width (highest mean per statement highlighted in
bold)

Map A4 Map A5 Map A6 Sign.
Statement mean stdev mean stdev mean stdev p
1. Map looks pleasing 0.88 0.93 1.44 0.58 0.72 0.74 0.055
2. Map looks beautiful 1.12 0.88 1.28 0.61 0.52 0.77 0.527
3. Map looks clear 0.64 0.81 1.24 0.52 1.24 0.88 1.000
4. Easy to perceive boundaries 0.40 0.65 1.24 0.52 1.52 0.77 0.244
5. Easy to understand hierarchy 0.68 0.90 1.32 0.63 1.44 0.71 0.543
6. Look of the borders 0.44 0.71 1.40 0.50 1.24 0.72 0.461
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Figure 16: Performance

machine, and parallelisation of our algorithm should all be explored if real-time visual-
isation is desired. Another possibility for speed-up is to reduce the number of iterations
run, at the expense of accuracy. By setting a low non-zero error rate, large performance
improvements are possible. For example, when testing a data set consisting of 275
nodes, reducing the number of iterations by a factor of 10 to only 1,000 iterations re-
sulted in a residual error rate of less than 1% for 16 nodes. For many applications, such
an error rate is acceptable and would allow big performance gains.

4.4. Error Rate

The earlier version of our visualisation method [3] had a limitation in that it was
not able to grow areas fully surrounded by other areas. In terms of liquid modelling
this means that the column of liquid in that area was higher than in the surrounding
areas. We have significantly revised our visualisation algorithm so that it is now able
to push neighbouring areas, which means that after a sufficient number of iterations the
layout reaches a steady state in which all areas have their previously calculated target
size.

In order to evaluate this, we tracked the error rate, calculated as the average of 1
minus the ratio of actual area size over target size for each area. We observed that
from an initially high error rate (close to 100%, meaning that almost all areas are of the
wrong size), the error rate drops until after about 14,000 iterations it approaches 0%,
as seen in Figure 17.

In contrast, the hexagon-tiling visualisation method of [2] does not guarantee that
all areas are shown of the correct size, or even that all areas are shown at all. Using
the same data as above, the hexagon-tiling visualisation method failed to display 9 of
about 500 areas, and displayed 1 area in only about 36% of its target size. That is, 2%
of areas are either not shown, or not shown in the correct size. Our new visualisation
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Figure 17: Error rate

method does not have this problem, as we not only show all areas, but show them in
their correct target size.

5. Conclusions

Today’s internet-scale applications produce “mountains of data”, and making sense
of this data is a challenge. New visual metaphors can help understand this data, iden-
tify clusters and perceive patterns. One of these metaphors is that of a geographic
map. Our earlier research produced map-like visualisations using a hexagon-tiling ap-
proach [2], but we identified several weaknesses of that approach, leading us to devise
a new approach based on expanding polygons that loosely models the expansion of
a liquid poured onto a plane. This visualisation represents hierarchical data with dif-
ferent levels shown as areas nested inside other areas, from country to province to
county. We have evaluated our visualisation comparing it with our previous visualisa-
tion method [2] and found our new visualisation to have improved usability, resulting
in higher accuracy and faster speed of task performance. Moreover, it has an error rate
close to zero, unlike the method of [2] which fails to display several areas. Finally, we
have identified aspects of visual quality that lead to user satisfaction.

The potential of map-like visualisations in presenting data in a more intuitive and
easy to understand form shows great promise for further applications, and we expect
that our method will be employed beyond the domain of Wikipedia in other domains
with large amounts of hierarchical data.
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