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Abstract: Efficient and fair scheduling has become increasingly critical in regional 

civil aviation systems, particularly in congested airspaces such as Macau. Existing 
scheduling approaches often overlook the strategic behavior of stakeholders and fail to 
incorporate energy efficiency or real-time constraints. To address these gaps, this paper 
proposes a dynamic game-theoretic cloud scheduling model tailored for Macau's civil 
aviation environment. The model captures the interactions among air traffic controllers 
(ATC), airport operation centers (AOC), and airline operators (AO) in a Stackelberg 
framework. A multi-objective optimization algorithm based on a genetically-modified 
particle swarm optimization (GMOPSO) is employed to balance flight delay, energy 
consumption, and fairness in cloud task scheduling. Simulation experiments using 2023 
operational data from Macau International Airport show that our approach reduces 
average task completion time by 16.7%, improves VM utilization by 15%, and 
significantly enhances stakeholder fairness compared to conventional scheduling 
strategies. 
Key-words: Aviation Cloud Systems; Game-Theoretic Scheduling; Energy-Aware 
Scheduling; Macau Case Study 

 
 

1 Introduction 
The rapid growth of civil aviation traffic has made efficient scheduling and 

resource management in air transportation systems more critical than ever. Modern air 
traffic flow management (ATFM) and airline operations face challenges such as 
airspace congestion, tight turnaround times, and increasing operational costs, all of 
which demand intelligent, adaptive scheduling strategies. Traditional approaches often 
treat scheduling as a centralized optimization problem aiming to minimize delays under 
capacity constraints [1]. However, these deterministic methods typically assume a 
single decision-maker and fail to capture the decentralized and strategic nature of real-
world aviation systems, where multiple stakeholders—airlines, airports, and 
controllers—hold conflicting objectives [2]. 

To address these limitations, researchers have begun incorporating game-theoretic 
models into transportation scheduling, allowing each agent to optimize its utility while 
interacting strategically with others. For example, dynamic game models have been 
applied to ATFM to capture airline route competition and equilibrium-based flow 
redistribution [3][4]. In parallel, with the rise of cloud computing in intelligent 
transportation and aviation systems, cloud-based scheduling platforms have emerged 
as a powerful means of supporting real-time decision-making [5]. These platforms 
enable large-scale data processing, dynamic optimization, and decentralized 

NOTICE: Author’s Post-Print Version (Final Draft Post-Refereeing) 
This is the author’s version of a work that was accepted for publication in Journal of Environmental Protection and Ecology 
Changes may have been made to this work since it was submitted for publication. The author acknowledges that the copyright of the final version 
is owned by the publisher. The final version can be accessed with the following link: https://scibulcom.net/en/article/YURDdouvXrMEhjYyRAIg  
 



 

2 
 

collaboration across stakeholders. 
Within the cloud computing domain, a significant body of work has focused on 

multi-objective optimization for task scheduling, balancing criteria such as execution 
time, cost, and energy usage [6]. Among metaheuristics, Multi-Objective Particle 
Swarm Optimization (MOPSO) has demonstrated strong performance in solving large-
scale scheduling problems in cloud environments [7]. Recent advances have proposed 
genetically modified variants (GMOPSO) that incorporate crossover and mutation 
operators to enhance convergence and diversity [8]. Meanwhile, utility-driven 
scheduling strategies have also been introduced to improve energy efficiency and QoS 
guarantees in cloud infrastructures [9]. 

Despite these developments, several key gaps remain. First, most existing aviation 
cloud scheduling models do not account for stakeholder coordination or fairness; they 
optimize from a global perspective but neglect the utility-driven behavior of individual 
agents. Second, sustainability metrics such as energy consumption are often overlooked 
in aviation-specific scheduling frameworks, even as the industry faces growing 
pressure to reduce its carbon footprint. Third, many methods are static or offline in 
nature and lack real-time adaptability in response to sudden flight disruptions or 
dynamic workloads [10]. 

To bridge these gaps, this paper proposes a dynamic game-based multi-objective 
cloud scheduling model tailored for regional civil aviation systems. The model 
integrates Stackelberg dynamic games among air traffic controllers (ATC), airport 
operation centers (AOC), and airline operators (AO), representing their distinct yet 
interdependent decision-making roles. A multi-objective optimization framework is 
designed to balance conflicting goals such as flight delay, resource utilization, and 
energy efficiency. The model is solved using a hybrid evolutionary algorithm based on 
a modified GMOPSO, incorporating game-theoretic strategy updates to achieve fair 
and stable outcomes among stakeholders. 

The contributions of this study are summarized as follows: 
1) We propose a game-theoretic cloud scheduling model that jointly considers the 

strategic interactions of ATC, AOC, and AO, reflecting realistic multi-agent 
coordination in civil aviation systems. 

2) We incorporate energy-aware optimization alongside delay and fairness 
objectives, enabling sustainable aviation scheduling under cloud-based 
infrastructure. 

3) A dynamic scheduling mechanism is developed using a hybrid GMOPSO 
algorithm with stakeholder-aware utility functions and real-time feedback loops. 

4) The proposed model is evaluated in a case study of Macau’s regional airspace, 
showing superior performance over baseline strategies in scheduling efficiency, 
fairness, and energy consumption. 

2 Related Work  

2.1 Game-Theoretic Models in Scheduling and Civil Aviation 
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Dynamic game theory has been widely adopted to model interactions in scheduling 
problems, particularly where multiple agents pursue independent goals. In the context 
of air traffic and civil aviation, traditional flow scheduling models often treat the 
system as a centralized optimization problem [11]. However, this assumption fails to 
capture the competitive or collaborative behaviors among multiple stakeholders such 
as airlines, airports, and ATC units. 

Wang et al. proposed a dynamic flow control model using game theory to describe 
airline route competition under capacity limits, demonstrating its effectiveness in 
improving equilibrium outcomes and reducing systemic congestion [13]. Similar 
approaches have emerged in general resource allocation, where non-cooperative or 
Stackelberg game formulations are used to derive strategy-stable solutions across 
distributed players [12]. Nevertheless, most game-theoretic aviation models remain 
limited to en-route traffic coordination or static slot allocation, rarely integrating with 
real-time IT systems or scalable computing infrastructure. 

This paper advances the field by embedding a Stackelberg game structure directly into 
a real-time cloud-based scheduling platform. This enables stakeholders such as ATC, 
AOC, and AO to engage in sequential, informed decisions while jointly optimizing 
key objectives like delay minimization, resource utilization, and fairness. 

2.2 Cloud Scheduling, MOPSO, and Multi-Objective Optimization 

With the widespread deployment of cloud computing in aviation operations, resource 
scheduling has evolved from traditional offline optimization to dynamic, distributed 
architectures. Various studies have employed cloud-based schedulers to handle large-
scale computing workloads in airline systems (e.g., weather prediction, real-time 
passenger flow processing). These schedulers must address multiple conflicting goals 
such as execution latency, energy consumption, and resource efficiency [14]. 

Multi-Objective Particle Swarm Optimization (MOPSO) has emerged as a leading 
approach for solving such problems due to its fast convergence and scalability [15]. 
Alkayal et al. proposed an efficient task scheduling model based on MOPSO that 
improved overall execution time in heterogeneous cloud systems [16]. Later 
enhancements incorporated genetic operators, creating Genetically Modified PSO 
(GMOPSO), which better maintained solution diversity and convergence rate in 
constrained environments [17]. 

In aviation-specific research, Zhou et al. applied a hybrid tabu-based MOPSO model 
to the irregular flight recovery problem, optimizing delay and cost simultaneously in a 
complex, real-time airline network [18]. Despite these advances, most cloud 
scheduling methods overlook the behavioral heterogeneity of stakeholders and lack 
integrated mechanisms for fairness or priority handling. 
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Our work builds on these foundations by proposing a stakeholder-aware scheduling 
algorithm combining cloud optimization with utility-based dynamic games. Unlike 
prior studies that treat stakeholders as passive system users, we model them as 
rational agents whose scheduling actions and responses form part of a game-theoretic 
equilibrium process. 

3 Dynamic Game-Based Scheduling Model for Civil Aviation Cloud Systems 
In this section, we propose a multi-agent cloud scheduling framework integrating 

a dynamic game model with multi-objective optimization, specifically designed for 
Macau’s regional aviation scheduling scenario. The goal is to coordinate resource 
contention among stakeholders while maximizing system efficiency and fairness. 
3.1 Model Participants and Assumptions 

The model considers three rational agents:  ATC (Air Traffic Control): aims to 
reduce flight delays and airspace conflicts. AOC (Airport Operation Center): seeks 
efficient utilization of runway and gate resources. AO (Airline Operators): focuses on 
cost minimization and scheduling fairness. 

These agents interact through a Stackelberg game structure, with ATC as leader, 
followed by AOC and AO. 

 

 
Figure 3.1 Integrated Dynamic Game and Cloud Scheduling Model 

Each participant optimizes a distinct utility function: 

𝑈!"# 	= −𝛼$𝐷conflict − 𝛼%𝐷delay 

𝑈!&# 	= 𝛽$𝑅utilization − 𝛽%𝑅imbalance 

𝑈!&  = −𝛾$𝐶adjustment − 𝛾%𝑉unfairness 

3.2 Dynamic Game Formulation 
The sequential decision-making game is defined as: 
 

𝐺 = {𝑁, 𝑆' , 𝑈' , 𝑇}, 	 𝑖 ∈ 𝑁 = {ATC,AOC,AO} 

𝑆∗ =𝑎𝑟𝑔𝑚𝑎𝑥 )!∈):𝑈'

"

+,$

(𝑆+)	 subject to constraints 

Where 𝑆∗ is the equilibrium scheduling strategy over T decision epochs. 
3.3 Game-Driven Multi-Objective Optimization (GMOPSO) 

We employ a Game-Integrated Multi-Objective Particle Swarm Optimization 
(GMOPSO) algorithm to solve the scheduling model. The approach embeds player 
utility evaluation within the PSO process. 
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Particle Representation: scheduling tuples for ATC, AOC, AO 
Fitness Evaluation: based on combined utility and performance 
Leader-Follower Strategy: memory-based Nash updates 

 
Figure 3.2 GMOPSO Algorithm Flow for Dynamic Scheduling 
This chapter formalizes a hierarchical cloud scheduling framework incorporating 

dynamic stakeholder interaction. The proposed model enables scalable and fair 
scheduling strategies, laying the algorithmic foundation for simulation experiments in 
the following chapter. 
3.3 Cloud Resource Mapping and Scheduling 

In the proposed aviation cloud scheduling system, each computational task is 
modeled as a tuple 𝑇- = {𝑀𝐼- , 𝜏- , 𝑝- , 𝛿-} , where 𝑀𝐼-  represents the number of 

instructions (in Millions), is the deadline, 𝑝-is the priority level, and 𝛿- is a binary 

flag indicating whether the task has a real-time constraint. Tasks originate from various 
aviation services, including e-ticketing, dispatch planning, and weather analysis, and 
must be assigned efficiently to a pool of virtual machines 𝑉 = {𝑣$, 𝑣%, … , 𝑣.} with 
different processing capabilities C. 

To ensure efficient execution, we formulate a multi-objective scheduling strategy 
considering three key metrics: delay, energy consumption, and resource utilization. The 
scheduler minimizes a weighted fitness function defined as: 

\] 

where 𝐿delay is the predicted latency and 𝐸cost	is the estimated energy required by 

VM 𝑣/. The weights 𝜔$, 𝜔%, and 𝜔0 allow the system to prioritize tasks with higher 
urgency while maintaining energy efficiency and high VM utilization. Real-time tasks 
(𝛿- = 1) are handled with strict deadline constraints during the optimization process. 
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4 Dataset and Experimental Results   
4.1 Dataset and Data Preprocessing 

The dataset employed in this study comprises representative operational records 
from Macau International Airport throughout the year 2023, supplemented by 
synthetically generated cloud computing task traces designed to simulate aviation-
related IT workloads. The data can be categorized into two main types: actual air traffic 
operation data and virtualized cloud scheduling data based on civil aviation information 
system characteristics. 

The air traffic operation data is primarily sourced from the “Monthly Traffic 
Statistics” published by Macau International Airport. It captures the dynamic 
fluctuation of daily aircraft movements, with inbound and outbound flights recorded 
separately. On average, the airport handles approximately 140–180 flights per day. 
Peak traffic periods are observed during 08:00–10:30 in the morning and 17:00–20:00 
in the evening, during which hourly movement density can reach 14–18 flights, 
significantly higher than non-peak intervals. 

Flight delay information is also included as a key operational indicator. In this 
study, a delay is defined as any deviation exceeding 15 minutes from the scheduled 
time. Based on monthly reports, the annual average flight delay rate fluctuates between 
12% and 18%, with occasional peaks exceeding 25% during adverse weather or 
unforeseen disruptions. Regarding passenger throughput, the total annual volume 
reached 5.79 million, equating to an average of approximately 125 passengers per flight, 
which aligns with the airport’s profile as a short-haul, high-frequency regional 
connector. 

To support terminal-area capacity modeling, the study further constructed a 
capacity envelope function based on traffic flows and hourly capacity constraints. Four 
typical operational states were identified according to the time of day, forming the basis 
of a segmented envelope model, as shown in Table 4.1: 

Table 4-1  Classification of Terminal Capacity by Time Period 
Time Period Time Range Max Inbound 

Capacity 
(flights/15min) 

Max Outbound 
Capacity 
(flights/15min) 

Peak Hours 08:00–10:30 / 
17:00–20:00 

4 4 

Sub-Peak Hours 10:30–13:00 / 
15:00–17:00 

3 4 

Normal Hours 13:00–15:00 / 
06:00–08:00 

2 3 

Nighttime 20:00–06:00 1 2 
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Based on the classified capacity model above, a 15-minute time resolution input 
matrix was constructed to simulate the game dynamics between inbound/outbound 
flight demand and available capacity. For cloud-side scheduling, a virtualized 
environment was built using the CloudSim platform, simulating key civil aviation IT 
applications such as e-ticketing, dispatching, passenger check-in, and flight planning. 

Prior to feeding the data into the model, a standard data preprocessing pipeline was 
applied, including missing value imputation, timestamp normalization, and numerical 
scaling to ensure data quality and simulation consistency. 

4.2 Simulation Environment 

The cloud scheduling experiments are implemented on the CloudSim 3.0 platform, 
customized to emulate the computing demands typical in Macau International Airport's 
operational applications, such as e-ticketing systems, flight dispatch coordination, 
passenger processing, and real-time meteorological updates. The simulation 
incorporates real-world airport operational parameters derived from 2023 public 
records and supplements them with synthetic high-density peak load data to simulate 
stress conditions. 

A three-tier stakeholder model is adopted, involving the Air Traffic Control 
Department (ATC), the Airport Operations Center (AOC), and Airline Operators (AO). 
These stakeholders interact in a sequential dynamic game modeled as a Stackelberg 
leader-follower framework, where ATC acts as the leader, AOC the intermediary, and 
AO the follower. Each agent seeks to optimize its own utility function subject to 
capacity, time, and fairness constraints. 

4.3 Model and Workload Configuration 

The workload consists of 1,000 simulated tasks corresponding to flight-related 
cloud operations, categorized into three service types based on urgency and resource 
intensity: standard (MI=100–150), time-sensitive (MI=200–300), and real-time 
(MI=400+). Tasks are randomly distributed across a pool of 20 virtual machines (VMs) 
configured in small, medium, and high-performance tiers. 

For the game-theoretic component, we implement three decision scenarios: 
Baseline (no cooperation): Independent optimization by each party. Bilateral game: 
ATC and AO engage in a Nash equilibrium-based optimization. Tripartite dynamic 
game: ATC, AOC, and AO negotiate strategies iteratively using a multi-objective 
particle swarm optimization (GMOPSO) algorithm. 

We evaluate system performance across five key dimensions: 

• Average Task Completion Time: Measures cloud efficiency. 
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• Flight Delay Time: Captures the impact of scheduling strategies on airside 
operations. 

• Resource Utilization Rate: Indicates how effectively VM capacity is leveraged. 
• Composite Stakeholder Utility: Aggregated from individual cost, delay, and 

fairness scores. 
• Scheduling Fairness Index: Assesses equitable resource allocation a 

4.4 Host-Side Resource Scheduling 
During the experiment, each step of the virtual machine migration strategy was 

recorded and evaluated from four dimensions: CPU, RAM, bandwidth (BW), and 
power consumption. The comparative analysis was based on the difference in resource 
utilization before and after migration. The specific calculation formula is expressed as 
follows: 

 

 Subsequently, we tested the effect of the scheduling algorithm on individual 
physical hosts within the cluster, focusing on the resource utilization changes after each 
migration round. The detailed experimental results are shown in the corresponding 
figures. 

 

Figure 4.1 CPU Utilization Improvement 

Figure 4.1 demonstrates a consistent increase in CPU utilization over ten migration 
rounds. The optimized scheduling strategy enhances CPU usage from approximately 
63% to nearly 79%, reflecting a cumulative improvement of around 16%. 
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Figure 4.2 RAM Utilization Improvement 

 

Figure 4.3 Bandwidth Utilization Improvement 

Figure 4.2 and Figure 4.3 illustrate the enhancement of RAM and bandwidth 
utilization, respectively. RAM utilization increases from 48% to 63%, while bandwidth 
utilization rises from 35% to 50%, confirming the algorithm's effectiveness across 
multiple resource dimensions. 

Collectively, the results indicate that the optimized migration-based scheduling 
significantly improves resource utilization, which lays a stronger foundation for 
downstream task scheduling and delay reduction under dynamic cloud environments. 

4.5 Results and Discussion 

Simulation results reveal clear performance differences between the scheduling 
approaches. Figure 4.4 illustrates the average task completion times under each strategy. 
The proposed GMOPSO with tripartite game yields a 16.7% reduction compared to the 
genetic algorithm baseline and a 23.4% improvement over FCFS. 



 

10 
 

 

Figure 4.4: Average Task Completion Time Comparison 

Figure 4.4 presents a radar chart comparing stakeholder utility scores. The tripartite 
strategy achieves superior balance, significantly enhancing fairness for airline operators 
without compromising ATC or AOC efficiency. 

 

Figure 4.5: Stakeholder Utility Comparison Radar Chart 

Resource utilization, peaks at 93% under dynamic game scheduling, compared to 
78% for legacy strategies. This indicates more effective use of cloud resources when 
strategic cooperation is embedded. 

 

Figure 4.6: VM Resource Utilization Rate 
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Additionally, delay distributions plotted confirm that collaborative strategies 
reduce long-tail delays. The fairness index improves from 0.67 (baseline) to 0.88 under 
the proposed model. 

 

Figure 4.7: Flight Delay Distribution Across Scheduling Strategies 

Overall, the results demonstrate that integrating cloud scheduling with stakeholder-
aware dynamic game theory significantly improves operational efficiency, fairness, and 
system robustness, particularly for mid-scale regional hubs like Macau. 

 
5 Conclusion 

Efficient and fair scheduling has become increasingly critical in regional civil 
aviation systems, particularly in congested airspaces such as Macau. Existing 
scheduling approaches often overlook the strategic behavior of stakeholders and fail to 
incorporate energy efficiency or real-time constraints. To address these gaps, this paper 
proposes a dynamic game-theoretic cloud scheduling model tailored for Macau's civil 
aviation environment. The model captures the interactions among air traffic controllers 
(ATC), airport operation centers (AOC), and airline operators (AO) in a Stackelberg 
framework. A multi-objective optimization algorithm based on a genetically-modified 
particle swarm optimization (GMOPSO) is employed to balance flight delay, energy 
consumption, and fairness in cloud task scheduling. Simulation experiments using 2023 
operational data from Macau International Airport show that our approach reduces 
average task completion time by 16.7%, improves VM utilization by 15%, and 
significantly enhances stakeholder fairness compared to conventional scheduling 
strategies. 
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